Pressure-driven Quantum Phase Transition
نویسندگان
چکیده
The zero-temperature quantum phase transition (QPT) is driven by quantum fluctuations, in contrast to the more familiar finite temperature transitions driven by thermal fluctuations. This paper demonstrates our work on two kinds of QPTs in two different materials, respectively. The first work focuses on the pressure-driven antiferromagnetic QPT in pure chromium which is a model system for studying the effects of quantum fluctuations on an itinerant antiferromagnet. Chromium orders antiferromagnetically near room temperature, but the ordering temperature can be driven to zero either by doping or applying large pressures. The second work examines the pressure-driven metal-insulation (MI) transition in nickel disulfide NiS2. NiS2 is a Mott-Hubbard material in which the T=0 MI transition can be tuned with pressure.
منابع مشابه
Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice
The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced pha...
متن کاملدرهمتنیدگی کوانتومی و گذار فاز کوانتومی تحت اتلاف در مدل ناهمسانگرد هایزنبرگ XXZ با برهمکنش ژیالوسینکی - موریا
Because the key issue in quantum information and quantum computing is entanglement, the investigation of the effects of environment, as a source of quantum dissipation, and interaction between environment and system on entanglement and quantum phase transition is important. In this paper, we consider two-qubit system in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii-moriya inter...
متن کاملQuantum phase transitions of magnetic rotons.
Because of weak spin-orbit coupling and broken inversion symmetry the paramagnons of an itinerant, almost ferromagnetic system become magnetic rotons. Using self-consistent Hartree and renormalization group calculations, we study weak fluctuation-driven first-order quantum phase transitions, a quantum tricritical point controlled by anisotropy, and non-Fermi liquid behavior associated with the ...
متن کاملMolecular to atomic phase transition in hydrogen under high pressure.
The metallization of high-pressure hydrogen, together with the associated molecular to atomic transition, is one of the most important problems in the field of high-pressure physics. It is also currently a matter of intense debate due to the existence of conflicting experimental reports on the observation of metallic hydrogen on a diamond-anvil cell. Theoretical calculations have typically reli...
متن کاملVolume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning
RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or secon...
متن کامل